B.M.S. COLLEGE FOR WOMEN BENGALURU -560004

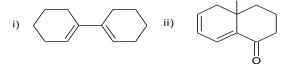
UUCMS. No.

III SEMESTER END EXAMINATION – APRIL - 2024

M.Sc. CHEMISTRY-ORGANIC SPECTROSCOPY (CBCS Scheme – F+R)

Course Code: MCH303T Duration: 3 Hours

Instruction: Answer Question No. 1 and any FIVE of the remaining.


1. Answer any TEN questions

$(2 \times 10 = 20)$

OP Code: 13008

Max. Marks:70

- a) Aniline absorbs at 280 nm but in acidic solution, the main absorption band is seen at 203 nm which is comparable to benzene. Explain
- b) Define bathochromic shift with an example?
- c) List out the modes of vibrations of CO₂ in IR Spectroscopy
- d) Mention the reference compound used in NMR. List out its advantages.
- e) Calculate the chemical shift value in ppm for a proton that has resonance 128 Hz downfield from the reference on a spectrometer that operates at 60 MHz
- f) How is PMR used to establish on which carbon, monochlorination of methyl ethyl ether occurs?
- g) The proton decoupled ¹³C NMR spectrum of tribromobenzene ($C_6H_3Br_3$) consists of two signals only. Which tribromobenzene is it?
- h) What is Karplus relationship? Write the equation
- i) Sketch and explain the ³¹PNMR spectrum of PPh₃.
- j) Explain the mass spectra of 1-propanol.
- k) EI-MS are recorded only in rarified gaseous state. Explain
- 1) The mass spectrum of benzene shows a peak at m/z 33.8. Account for the peak.
- 2. a) Using the Woodward-Fieser rules, calculate the absorption maximum for each of the following compounds:

b) How is UV-Visible spectroscopy useful in determining the strength of hydrogen

BMSCW LIBRARY

bonding.

- c) Explain Fieser-Kuhn rule for polyenes.
- 3. a) Explain second order splitting taking suitable example.
 - b) Discuss diamagnetic shielding effect in case of benzene and acetylene. (5+5=10)

(4+3+3=10)

4. a) Off resonance ¹³C NMR data for three isomeric alcohols with molecular formula

C₄H₁₀O is given below:

- A (δ ppm): 31 (q), 69.5 (s)
- B (δ ppm): 11 (q), 22 (q), 31 (t), 69.5 (d)
- C (δ ppm): 19 (q), 31 (d), 69.8 (t)

Identify alcohols, assign peak to carbon atoms.

- b) Explain the factors affecting chemical shifts of alkyl halides and carbonyl compounds in ¹³C NMR spectroscopy. (6+4=10)
- 5. a) Discuss evaporative ionization techniques. Give their applications.
 - b) Illustrate McLafferty's rearrangement with suitable example. (6+4=10)
- 6. a) Discuss the phenomenon of proton exchange by taking ethanol as an example.
 - b) Write a note on the effect of restricted rotation on proton NMR spectra.
 - c) Explain relaxation processes in NMR (4+3+3=10)
- 7. a) Write a note on: i) DEPT spectrum ii) NOE effects
 - b) An aromatic compound (molecular mass=135) gives the following signals in its ¹H
 NMR spectrum: singlet (δ 2.09, 3H), a distorted singlet (δ 3.09,1H) a multiplet
 (δ 7.24, 3H), a multiplet (δ 7.75, 2H). Predict the structure of the compound. (6+4=10)
- **8.** a) With a neat diagram, explain the instrumentation of a double focused mass spectrometer.
 - b) Identify the structure of the compound from the below given data and interpret the data to the structure obtained. Molecular formula: $C_5H_7NO_2$, ¹H NMR (CDCl₃) δ : 4.3 ppm (quartet, 2H, *J* = 7.5 Hz), 3.5 ppm(s, 2H), 1.3 ppm (triplet, 3H, *J* = 7.5 Hz); ¹³C NMR (CDCl₃) δ : 165, 115, 62, 25, 15 ppm. (5+5=10)
